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Fluid-solid transitions of the lattice gases 
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Department of Applied Physics, Tohoku University Sendai, Japan 

Received 6 August 1974 

Abstract. Phase transitions of the soft-core lattice gas (finite repulsion at the first neighbour), 
and of the hard-core lattice gas (infinite repulsion at the first neighbour) with finite attraction 
at the second neighbour, are treated in the Bethe approximation (exact solution of infinite 
Bethe lattices). In the former two second-order transitions of fluid .+ solid .+ fluid and the 
phenomena of the melting point maximum are found. In the latter second- and first-order 
transitions of fluid (gas) + solid are found above and below the tricritical point, respectively. 
The gas-liquid transition is masked by the gas-solid transition and is not realized. 

1. Introduction 

The phase transition between gaseous and liquid phases is understood by analogy with 
the ferromagnetic transition, and that between fluid and solid phases with the anti- 
ferromagnetic transition. As for the hard-core lattice gas (Temperley 1959, 1961, Burley 
1960, 1972, Runnels 1972) results of closed-form approximations give a second- or 
first-order fluid-solid transition. Such a fluid-solid transition is also suggested from 
the results of numerical experiments (Alder and Wainwright 1962), using the method 
of the eigenvalue problem (Runnels and Combs 1966, Runnels et a1 1970), and the 
series expansion method (Gaunt and Fisher 1965). The effect of attraction in the hard- 
core lattice gas is also discussed (Orban et al 1968, Runnels er al 1970). 

In this paper, firstly, the soft-core lattice gas (first neighbour finite repulsion), and 
secondly, the hard-core lattice gas (first neighbour infinite repulsion) with second 
neighbour interaction, are discussed in the Bethe approximation (an exact solution of 
the infinite Bethe lattice, Katsura and Takizawa 1974). In the former, two second-order 
transitions (fluid phase -, solid phase + fluid phase) and the phenomena of the melting 
point maximum, which are not realized in the hard-core lattice gas, are observed. In 
the latter, the gas-solid transition is second- and first-order, above and below the tri- 
critical point, respectively. The gas-liquid transition is masked by the gas-solid tran- 
sition. 

2. Soft-core lattice gas 

In this section we consider the fluid-solid transition of the soft-core lattice gas. The 
first-neighbour interaction is denoted by -25,. Positive and negative 5 ,  refer to 
attraction and repulsion, respectively, and the latter is the case for a soft-core lattice gas. 
The model is treated by the Bethe approximation. In the case of repulsion, the possibility 
of a disordered phase (fluid phase) and that of an ordered phase (solid phase) is taken 
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into account, and the lattice is divided into a and /? sublattices. The result for the Bethe 
lattice (Katsura and Takizawa 1974, to be referred to as KT) is applied. 

Let 
= e-J i ikT 

U,J = xLj33 z x4y = fugacity, 

then the densities of a and fl  sublattices, p ,  and p a ,  are given by 

(see KT (3.4)). Here q is the coordination number and u , , ~  is determined by 

(2.la, 2.lb) 

(2.2a, 2.2b) 

(see KT (3.2)). Evidently we have a solution in which U, = us = U, and it determines the 
disordered phase. Substituting 

z = +$J- 
into (2.1), we have 

U + u2/x2 

= 1 +2U+U2/X2‘ 

Then the pressure of the disordered phase pf is given by 

Pf d l n z  
= i, P x d u .  

Expressing U in terms of p after the integration, we have 

(2.5) 
q ( 1 - 2 p ) - 2 ~ - ~ ( 1 - p ) + [ ( 1 - 2 p ) ~ + 4 ~ - ~ p ( l - p ) ] ” ~  

--In( 2 2(1 -x-2)  

The equation of state (2.5) is equivalent to the one obtained by the method of quasi- 
chemical approximation (Cernushi and Eyring 1939). In the case of an attractive force, 
a first-order gas-liquid transition below T,  is known (x, = i, T , / J ,  = 0.910239, 
gJkT = 3 In 2 -+In 3 = 0.084949). In the limit x -, CO (T  + 0 in the repulsive case) it 
gives one for the hard-core (first-neighbour infinite repulsion) lattice gas (Burley 1960). 

Now the ordered phase for q = 3 is considered. Multiplying the denominators of 
both (2.24 and (2.2b), subtracting each other, and dividing by U, - us, we have 

2z u , + u p  
1 -u2us+,+- z = 0. 

X x4 
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Substituting (2.2b) into (2.6), we have 

( l+;)2U:+( -z+2+2+2+F U,+ l+T = 0. 
4z 2z2i i 3' 

The two solutions of (2.7) give U ,  and u p .  
The transition points between the disordered phase and the ordered phase are given 

by the condition that (2.7) has equal roots. Hence the values of the fugacity at the 
transition points are given by 

8 
1 - 6 ~ - ' - 3 ~ - ~ & [ ( 1 - 6 ~ - ~  - 3 ~ - ~ ) ~  - 6 4 ~ - ~ ] " ~ '  (2.8) z c 1  - 

zC2 
- 

where zcl and zc2 are the values of the fugacity at which the ordered phase appears and 
ends, respectively. The value of x at which zcl = zc2 gives the maximum melting 
temperature T,, ie x, = 3, T,/IJ,I = 0.910239. 

Inserting z from (2.24 into (2.14, we express the density of the ordered phase as 

1 U ,  + up + 2U,Up/X2 
p = +(p,+pp) = - 2 1 + U ,  + ug + U,Up/X2' 

Using the relation between the roots and the coefficients in (2.7), we express p in terms 
of z instead of U ,  and up: 

1 2 - ~ ( 1 - 3 ~ - * )  p = -  
2 l -z( l -3x-2)+X-6z2'  

(2.10) 

From (2.10) 

The pressure of the ordered phase p ,  is given by 

= S l ( p c J +  Pdz, 
Z 

ZCl 
kT 

(2.12) 

where Sl(pc,)  is the value of the disordered phase at p(zcl) with (2.8) and (2.10). From 
(2.12), (2.5), (2.10) and (2.Q p ,  is given by 

(2.13) P 
kT = ~ l ( ~ c 1 ) + ~ 2 ( z ( ~ ) ) - ~ , ( z , l ) ,  

where 

S2(z)  = - + l n l ~ ~ z - ~ + ( 3 - ~ ~ ) z - ~  + x - 4 1 ,  (2.14) 

and z(p) is given by (2.1 1). 
At higher densities ( p  > p(zc2)), the disordered phase again appears and the pressure 

is given by S,(p)  in (2.5) (= S l ( p c , ) + S 2 ( z c 2 ) - S 2 ( z , , ) + S , ( p ) - S , ( p c 2 ) ) .  At the hard-core 
limit x -+ cc ( T  - 0), the equation of state for the ordered state of the hard-core gas? 

t Corresponding hard-core ordered-state equation for z = 4 is given by Burley (1961) and shows second-order 
transitions. 
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(first-neighbour infinite repulsion, Runnels 1968) 

p J k T  = In( 1 - p )  -+ In( 1 - 2 p )  + In 2 ,  (2 .15 )  

is reproduced, and the part of the isotherm for + c p disappears. 
The pressure4ensity characteristics are shown in figure 1. Two second-order 

fluid-solid transitions and the melting point maximum are observed. In figures 2 and 3 
respectively are shown p-T and p-T phase diagrams for the soft-core lattice gas. 

P 

Figure 1. Isotherm of the soft-core lattice gas (first-neighbour interaction - 2 J 1 ,  J ,  > 0 :  
attraction, J ,  < 0:  repulsion). Full curves and broken curves represent the disordered 
(fluid) phase and the ordered (solid) phase, respectively. A, T / J ,  = 0 ;  B, T/J, = -0.5; 
C ,  T / J ,  = -0.910239 (maximum melting point); D, T / J l  = co; E ,  T / J ,  = 0.75. 

05 1.0 
I 

Figure 2. p-T phase diagram (melting point curves) of the lattice gas with soft core. 
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Figure 3. p-Tphase diagram of the lattice gas with soft core 

3. Hard-core lattice gas with attraction 

Next the fluid-solid transition of the hard-core lattice gas with attraction - 25, at the 
second neighbours is treated. Recently statistical mechanics of the infinite Bethe lattice 
with first- and second-neighbour interactions as shown in figure 4 (q = 3) is developed 

Figure 4. Bethe lattice with first- and second-neighbour interactions ( q  = 3). 

(Katsura arid Takizawa 1974). The sublattice magnetizations U, and U@ are expressed 
in terms of four kinds of effective field in (KT (5,8')) ,  and equations to determine the 
effective fields (KT (5.6a) and (5.6b)) are given. We transform these relations of the Ising 
model to the lattice gas language. Let 

U,+ = w21,+, 
U@+ = xr21p+, 

U,- = x'121,-, 

up- = xr21,- ,  
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where x = e-Jl/kT, 5 = q = e-J2/kT. Taking the hard-core limit x + CO, + 0 (U finite) 
in (KT (5.6))t, we have 

( 3 . 1 ~ )  

(3.lb) 

After eliminating U,- and up-  by using (3.1), we represent U,+ and U,+ simply by U, 
and U,. Hereafter we consider the case 4 = ‘I. From KT (5.6) we have 

z = U,+ (1 + U:+ ‘I - + 2u, + 12( 1 + U; + 5 - 2  + 2u, +)  
(1 +U:+ q -6  + 2u, + ‘I -2)2 

(1 +U;+ 5- + 2u,+)2(1 + u;+q-2 + 2u,+) 
(1 + u;+ 4 -6  + 2up + 5 -2)2  

- 
- up+ 

( 3 . 2 ~ )  

(3.2b) 

which determines U, and up  for given fugacity z. Evidently solution of the disordered 
phase, U, = up  = U exists. A solution for which U, # up gives the ordered phase. 

The density p and the sublattice density p, are obtained from KT (5.8’) by taking the 
hard-core limit as 

P = %Pa +PO)? 

P,(% 3 up) = P A U p  9 %I. 
In the disordered phase, p,  z and pr/kT are given by 

(3.3‘) 

in a similar way as in Q 2. When T < T,(T,/J2 = 1.616), pr/kT shows van der Waals 
shape and gives gaseous and liquid phases. 

t The second equation of (5.6~1) and that of (5 .6b)  in KT should read 

I,+ x 2 + s - 2 I ; _  +2x1,- 

[,- 1 +x2<-21;+ + 2 x 4 +  F,. I = y -  
a -  

and the equation (5.8) for Z should be deleted. 
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Now we consider the ordered phase. We define 

u2 + 2u52 + (2  

( U 2  + 2 4 4  + 5 6 ) ~ .  
F(u)  = U (3.6) 

Equation (3.2) gives F(u,) = F(us). Multiplying the denominators to F(u,)-  F(up) = 0, 
and dividing by U, - us , we have an equation for U usus for given U = (U, + up)/2 : 

G(u, U) = ~ ~ + ( 4 5 ~ ~ - 4 5 ~ + 6 5 ~ - 5 ~ ) ~ ~  

+ [45’u2 + ( - 85’ O + 8t6)u - 75’ + 45’ O + 2t8]v 

+(-4512u2-4514u-514) = 0. 

The real positive solution U of (3.7) together with 

determines U, and up for given U. 
The fugacity z in the ordered phase (3.2) is transformed into 

The pressure p s  is given by 

kT 

where p is given by (3.3’) with U, and us in (3.7) and (3.8), and 

d l n z  a l n z  a l n z d u  +-- du au a v  du’ 

dv a q a u  
du aclau? 

-- -- 

- =  -- 

(3.7) 

(3.9) 

(3.10) 

(3.1 1)  

(3.12) 

using z in (3.9’) and G in (3.7). The lower limit of (3.10), U,, is the value of the limit U, + u p ,  
in the solution of (3.7) and (3.8) for given 5.  It is a real positive solution of 

(3.13) u4 + (452 - 2541~3 + (352 - 356)u2 + (256 - 459, - 5 8  = 0, 

which is obtained by putting v = u2 in (3.7) and by factorizing by u2 + 2t4u + t6.  
The inverse of the compressibility is given by 

ap/kT d In z du 
= p-- 

aP du dp’ (3.14) 

When (d In z/du),c > 0, U, gives the point of the second-order transition ( p  = p(u,) in 
(3.4)). When (d  In z/du),= < 0, the system has the first-order phase transition at some 
value of p (< p,(u,)) which is determined by Maxwell’s rule. The tricritical point 7; is 
shown to be T / J ,  = 3.4125 which is determined by (d In z/du),= = 0. 

Figures 5 and 6 show the p/kT-p characteristics. Figure 7 shows the p-T phase 
diagram and figure 8 the p-T phase diagram of the fluid-solid transition. The pheno- 
menon of the melting point maximum is not observed. The gas-liquid transition is 
masked by the gas-solid transition in the range T < T,  < ?;. 
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Figure 5. Isotherm of the hard-core lattice gas with finite interaction at the second neighbour, 
- 2J,. Full curves and broken curves represent the disordered (fluid) phase and the ordered 
(solid) phase, respectively. The full scale of the abscissa is p = 0.5. A, TIJ, = w ;  
B, T/J, = 10; C, T/J, = 3.4125 (tricritical point); D, T/J, = 1.616 (critical point between 
gas and liquid); E, T/J, = 1.25. 

/ 
Gas 

I 2 3 
I l P  

Figure 6. Maxwell construction of the isotherm of the hard-core lattice gas with finite 
attraction at the second neighbour : T = 1.5J,. The gas-liquid transition is masked by the 
gas-solid transition, and only the gas-solid transition is realized. 
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r q  
Figure 7. p T  phase diagram of the hard-core lattice gas with attraction at the second 
neighbour, -U2. The full curve represents the second-order transition and the broken 
curve its continuation. The first-order transition line locates below the broken curve. 

I' 

I /  
/ 

5 10 

TI4 

Figure 8. p-T phase diagram of the hard-core lattice gas with attraction at the second 
neighbour, -25 , .  The full curve represents the second-order transition and the broken 
curve its continuation. 

4. Conclusion and Discussions 

In this paper, firstly, the soft-core lattice gas and secondly, the hard-core lattice gas with 
attraction at the second neighbours, are treated in the Bethe approximation, ie in the 
exact solutions of the infinite Bethe lattice?. The method has an advantage, compared 
to the series method or to the eigenvalue method, in that the transition point is given 
definitely. Main results for properties of the Bethe lattice gas will hold in general. 
t In the finite Bethe lattice the surface effect is of the same order as the volume effect. The surface effect of 
the finite Bethe lattice which causes the disappearance of the fluidsolid transition was discussed by Runnels 
(1967) and that in connection with a Stanley-Kaplan type transition by Matsuda (1974). 
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In the soft-core lattice gas two second-order transitions, fluid + solid --f fluid, exist 
for T < T', and the melting point has a maximum (T, = 0.9102391J11). The latter 
transition disappears at the hard-core limit. For T > T',, only the fluid phase is realized. 

In the hard-core lattice gas with attraction at the second neighbours, two solutions 
describing the fluid (gas and liquid) phase and the solid phase exist. The former solution 
has a van der Waals type isotherm and the critical temperature T,  (= 1.616 5,). In the 
latter solution the tricritical point '7; (=  3.4125 J,) exists and it divides the transition 
curve into the second-order part and the first-order part of the fluid-solid transition. 
Similar features are also reported in the results of the matrix method (Runnels et al 1970). 
At low temperatures the location of the starting point of the solid-phase solution is far 
in the low density side. The liquid phase does not appear because it is masked by the 
solid phase, and only the gas-solid transition is realized (see figure 5). In order for the 
two transitions, gas-liquid and liquid-solid, to appear together, the effect of the attrac- 
tion should be stronger (for example, Kac potential or up to fifth neighbour interactions 
(Orban er a1 1968)), or the repulsive interaction should be weaker. 

In the hard-core lattice gas with finite repulsion at the second neighbours, the pos- 
sibility of finding new phases other than the ones considered here is involved. It may 
correspond to another kind of solid and solid-solid transition will be found in such 
systems. It may be treated by considering three or four sublattices. 
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